itsdm - Isolation Forest-Based Presence-Only Species Distribution
Modeling
Collection of R functions to do purely presence-only
species distribution modeling with isolation forest (iForest)
and its variations such as Extended isolation forest and
SCiForest. See the details of these methods in references: Liu,
F.T., Ting, K.M. and Zhou, Z.H. (2008)
<doi:10.1109/ICDM.2008.17>, Hariri, S., Kind, M.C. and Brunner,
R.J. (2019) <doi:10.1109/TKDE.2019.2947676>, Liu, F.T., Ting,
K.M. and Zhou, Z.H. (2010) <doi:10.1007/978-3-642-15883-4_18>,
Guha, S., Mishra, N., Roy, G. and Schrijvers, O. (2016)
<https://proceedings.mlr.press/v48/guha16.html>, Cortes, D.
(2021) <arXiv:2110.13402>. Additionally, Shapley values are
used to explain model inputs and outputs. See details in
references: Shapley, L.S. (1953)
<doi:10.1515/9781400881970-018>, Lundberg, S.M. and Lee, S.I.
(2017) <https://dl.acm.org/doi/abs/10.5555/3295222.3295230>,
Molnar, C. (2020) <ISBN:978-0-244-76852-2>, Å trumbelj, E. and
Kononenko, I. (2014) <doi:10.1007/s10115-013-0679-x>. itsdm
also provides functions to diagnose variable response, analyze
variable importance, draw spatial dependence of variables and
examine variable contribution. As utilities, the package
includes a few functions to download bioclimatic variables
including 'WorldClim' version 2.0 (see Fick, S.E. and Hijmans,
R.J. (2017) <doi:10.1002/joc.5086>) and 'CMCC-BioClimInd' (see
Noce, S., Caporaso, L. and Santini, M. (2020)
<doi:10.1038/s41597-020-00726-5>.