--- title: "Applications of Shapley values on SDM explanation" subtitle: "with an example of Random Forest model" author: "Lei Song" date: "2022-12-01" output: rmarkdown::html_document: theme: readable vignette: > %\VignetteIndexEntry{Applications of Shapley values on SDM explanation} %\VignetteEngine{knitr::rmarkdown_notangle} %\VignetteEncoding{UTF-8} --- ## Introduction In `itsdm`, Shapley values-based functions can be used both by internal model iForest and external models which is fitted outside of `itsdm`. These functions can analyze spatial and non-spatial variable responses, contributions of environmental variables to any observations or predictions, and potential areas that will be affected by changing variables. In this vignette, we show how an external model can be used for these functions with an example of Random forest (RF) model on Baobab trees of Madagascar. ## Load libraries ```r # Load libraries library(itsdm) library(dplyr) library(stars) library(virtualspecies) library(dismo) library(randomForest) library(ggplot2) library(ggpubr) library(rnaturalearth) library(rgbif) library(lubridate) select <- dplyr::select ``` ## Baobab trees of Madagascar ```r # Set study area, Madagascar study_area <- ne_countries( scale = 10, continent = 'africa', returnclass = 'sf') %>% filter(admin == 'Madagascar') %>% select() # Get training data ## Search via GBIF occ <- occ_search( scientificName = "Adansonia za Baill.", hasCoordinate = TRUE, limit = 200000, hasGeospatialIssue = FALSE) %>% `[[`("data") %>% select(decimalLongitude, decimalLatitude) ## Clean the occurrences spatially occ <- occ %>% st_as_sf(coords = c('decimalLongitude', 'decimalLatitude'), crs = 4326) occ <- st_intersection(study_area, occ) ``` ## Environmmental variables ```r # Get environmental variables for current and future bios_current <- worldclim2( var = 'bio', res = 2.5, bry = study_area, path = tempdir(), nm_mark = 'africa') %>% st_normalize() # Remove highly correlated variables bios_current <- dim_reduce( bios_current, threshold = 0.7, preferred_vars = c(paste0("bio", c(1:3, 13)))) bios_current <- bios_current$img_reduced # Query the future variables bios_future <- future_worldclim2( var = 'bioc', res = 2.5, bry = study_area, interval = "2041-2060", path = tempdir(), nm_mark = 'sa') %>% st_set_dimensions("band", values = paste0("bio", 1:19)) %>% dplyr::slice("band", st_get_dimension_values(bios_current, "band")) %>% st_normalize() ``` ## Make training samples ```r ## Spatial deduction template <- bios_current %>% dplyr::slice("band", 1) %>% mutate(reduced_image = NA) occ <- st_rasterize( occ, template) %>% st_xy2sfc(as_points = T) %>% st_as_sf() %>% select(geometry) rm(template) ## Extract environmental values training <- st_extract( bios_current %>% split("band"), occ) %>% st_drop_geometry() %>% mutate(occ = 1) ## Get background values set.seed(124) background <- randomPoints( as(bios_current %>% dplyr::slice("band", 1), "Raster"), 1000) background <- st_extract(bios_current, background) %>% as.data.frame() %>% na.omit() %>% mutate(occ = 0) names(background) <- c(st_get_dimension_values(bios_current, "band"), "occ") # Put them together training <- rbind(training, background) %>% na.omit() %>% select(c("occ", st_get_dimension_values(bios_current, "band"))) ``` ## Fit the model ```r # Convert independent to factor for RF. training$occ <- as.factor(training$occ) # Calculate class frequency prNum <- as.numeric(table(training$occ)["1"]) # number of presences bgNum <- as.numeric(table(training$occ)["0"]) # number of backgrounds samsize <- c("0" = prNum, "1" = prNum) # Fit the down-sampling RF set.seed(123) mod_rf <- randomForest( occ ~ ., data = training, ntree = 1000, sampsize = samsize, replace = TRUE) ``` ## Make the predictions under current and future environment ```r # Reformat the variables bios_current <- bios_current %>% split("band") bios_future <- bios_future %>% split("band") # Suitability under current and future conditions suit_current <- predict(bios_current, mod_rf, type = "prob")["1"] suit_future <- predict(bios_future, mod_rf, type = "prob")["1"] # Plot them preds <- c(suit_current, suit_future) names(preds) <- c("Current", "Future") ggplot() + geom_stars(data = preds %>% merge(name = "band"), na.action = na.omit) + scale_fill_viridis_c("Suitability") + facet_wrap(~band) + coord_equal() + theme_void() + theme(strip.text.x = element_text(size = 12)) ``` plot of chunk predSuit ## Environmental response curves ### Preciction wrapper function This is probably the most important argument to set in order to get proper result. Here is the example for Random Forest SDM used in this vignette: ```r ## Define the wrapper function for RF ## This is extremely important to get right results pfun <- function(X.model, newdata) { # for data.frame predict(X.model, newdata, type = "prob")[, "1"] } ``` As we could see, the wrapper function has to have at least two arguments: model object and the newdata. Then the function body has to make the proper prediction on the newdata. For instance, we have to set `type = "prob"` to let RF make probabilities and we have to subset the result to make it give us the probabilities of being presence. ```r # Make the response curves respones <- shap_dependence( model = mod_rf, var_occ = training[, 2:ncol(training)], variables = bios_current, pfun = pfun) # Check bio13, Precipitation of Wettest Month, for example plot(respones, target_var = "bio13") ``` plot of chunk rspCurve ```r # Check relationship between bio13 and bio2 for example # These plots can be extended as they are ggplot2 plot, like this: plot(respones, target_var = "bio13", related_var = "bio2", smooth_line = FALSE) + theme_bw() + theme(text = element_text(size = 16)) ``` plot of chunk rspCurve ## Environmental response maps ```r rsp_maps <- shap_spatial_response( model = mod_rf, var_occ = training[, 2:ncol(training)], variables = bios_current, pfun = pfun) # Check the response map of bio13, for example plot(rsp_maps, target_var = "bio13") ``` plot of chunk rspMap ## Analyze environmetnal contribution of observations ```r # Take some observations for example set.seed(124) occ_to_check <- randomPoints( as(bios_current %>% select("bio1"), "Raster"), 4) vars_to_check <- st_extract(bios_current, occ_to_check) %>% as.data.frame() # Do the calculation var_ctris <- variable_contrib( model = mod_rf, var_occ = training[, 2:ncol(training)], var_occ_analysis = vars_to_check, pfun = pfun) # Check it ## Spatial locations ggplot() + geom_sf(data = study_area, fill = "transparent", color = "black", linewidth = 0.8) + geom_sf(data = st_as_sf(data.frame(occ_to_check), coords = c("x", "y"), crs = 4326), color = "blue") + theme_void() ``` plot of chunk envCtr ```r # The contributions of variables to each observation plot(var_ctris, plot_each_obs = TRUE, num_features = 6) ``` plot of chunk envCtr ## Affects of changing environment ```r bio13_changes <- detect_envi_change( model = mod_rf, var_occ = training[, 2:ncol(training)], variables = bios_current, target_var = "bio13", variables_future = bios_future, pfun = pfun) # Check the result plot(bio13_changes) ``` plot of chunk chanEnv