--- title: "Introduction of itsdm with a virtual species" author: "Lei Song" date: "2022-11-16" output: rmarkdown::html_document: theme: readable vignette: > %\VignetteIndexEntry{Introduction of itsdm with a virtual species} %\VignetteEngine{knitr::rmarkdown_notangle} %\VignetteEncoding{UTF-8} --- ## Set up Install your missing packages ```r install.packages('rnaturalearth') install.packages('here') install.packages('virtualspecies') ``` ```r library(sf, quietly = T) library(itsdm, quietly = T) library(ggplot2, quietly = T) library(dplyr, quietly = T) select <- dplyr::select ``` ## Prepare environmental variables We could use packages like `rnaturalearth` to quickly get the boundary of most countries and regions. You can also read your study area boundary for sure. Providing your boundary to function `worldclim2` would allow you to download files from worldclim version 2 clipping to your area. ```r library(stars, quietly = T) library(rnaturalearth, quietly = T) # Get Africa continent af <- ne_countries( continent = 'africa', returnclass = 'sf') %>% filter(admin != 'Madagascar') # remove Madagascar # Union countries to continent af_bry <- st_buffer(af, 0.1) %>% st_union() %>% st_as_sf() %>% rename(geometry = x) %>% st_make_valid() bios <- worldclim2(var = 'bio', bry = af_bry, path = tempdir(), nm_mark = 'africa') # Plot BIO1 to check the variables # plot(bios %>% slice('band', 1), # main = st_get_dimension_values(bios, 'band')[1]) ``` In species modeling, people usually want to remove the strong correlations between environmental variables. `dim_reduce` is such a function you need. The function could either reduce the dimension of your environmental variable stack itself or according to a bunch of observations. It also allows you to set a desirable threshold. Note that it only works on numeric variables. Because categorical variables have less risk of having a high correlation with others, we usually prefer to keep categorical variables. ```r library(stars, quietly = T) # An example of reducing dimensions ## Here we didn't set samples, so use whole image bios_reduce <- dim_reduce( bios, threshold = 0.6, preferred_vars = c('bio1', 'bio12', 'bio5')) # Returned ReducedImageStack object bios_reduce #> Dimension reduction #> Correlation threshold: 0.6 #> Original variables: bio1, bio2, bio3, bio4, bio5, bio6, bio7, bio8, bio9, #> bio10, bio11, bio12, bio13, bio14, bio15, bio16, bio17, bio18, bio19 #> Variables after dimension reduction: bio1, bio12, bio9, bio14, bio15 #> ================================================================================ #> Reduced correlations: #> bio1 bio12 bio9 bio14 bio15 #> bio1 1.00 -0.04 0.50 -0.07 0.44 #> bio12 -0.04 1.00 -0.03 0.56 -0.16 #> bio9 0.50 -0.03 1.00 0.01 -0.06 #> bio14 -0.07 0.56 0.01 1.00 -0.40 #> bio15 0.44 -0.16 -0.06 -0.40 1.00 # img_reduced of ReducedImageStack is the raster stack bios_reduce$img_reduced #> stars object with 3 dimensions and 1 attribute #> attribute(s): #> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's #> reduced_image 0 17.75392 25.91388 154.5419 83.09974 4347 447385 #> dimension(s): #> from to offset delta refsys point values x/y #> x 975 1388 -180 0.166667 WGS 84 FALSE NULL [x] #> y 316 750 90 -0.166667 WGS 84 FALSE NULL [y] #> band 1 5 NA NA NA NA bio1,...,bio15 ``` ## Creating the virtual species Using virtual species is a crucial method in ecological studies. First, let's create a virtual species using the package `virtualspecies` to know exactly what is happening. ```r library(here, quietly = T) library(virtualspecies, quietly = T) # Subset environmental variables to use bios_sub <- bios %>% slice('band', c(1, 5, 12, 15)) bios_sub <- stack(as(split(bios_sub), 'Spatial')) # Formatting of the response functions set.seed(10) my.parameters <- formatFunctions( bio1 = c(fun = 'dnorm', mean = 25, sd = 5), bio5 = c(fun = 'dnorm', mean = 35, sd = 5), bio12 = c(fun = 'dnorm', mean = 1000, sd = 500), bio15 = c(fun = 'dnorm', mean = 100, sd = 50)) # Generation of the virtual species set.seed(10) my.species <- generateSpFromFun( raster.stack = bios_sub, parameters = my.parameters, plot = F) # Conversion to presence-absence set.seed(10) my.species <- convertToPA( my.species, beta = 0.7, plot = F) # Check maps of this virtual species if you like # plot(my.species) # Check response curves plotResponse(my.species) ``` plot of chunk virtualspecies ## Generate pseudo samples for virtual species ```r # Sampling set.seed(10) po.points <- sampleOccurrences( my.species, n = 2000, type = "presence only", plot = FALSE) po_df <- po.points$sample.points %>% select(x, y) %>% mutate(id = row_number()) head(po_df) #> x y id #> 1 -6.083333 11.083333 1 #> 2 -5.750000 10.250000 2 #> 3 38.750000 -6.750000 3 #> 4 39.250000 -10.416667 4 #> 5 26.583333 -8.583333 5 #> 6 0.250000 9.083333 6 ``` As we all know, there are commonly sampling bias and observation errors. People use multiple methods to reduce these disturbances in samples. For example, here, we use the function `suspicious_env_outliers` to detect and/or remove possible environmental outliers. This step could be used with other strategies to do sample cleaning. ```r # Get environmental variable stack variables <- bios %>% slice('band', c(1, 5, 12, 15)) # Check outliers occ_outliers <- suspicious_env_outliers( po_df, variables = variables, z_outlier = 5, outliers_print = 4, visualize = FALSE) #> Reporting top 4 outliers [out of 6 found] #> #> row [463] - suspicious column: [bio5] - suspicious value: [32.78] #> distribution: 95.714% >= 36.01 - [mean: 37.68] - [sd: 0.66] - [norm. obs: 67] #> given: #> [bio1] > [27.31] (value: 27.39) #> [bio15] <= [102.79] (value: 102.48) #> [bio12] <= [993.00] (value: 845.00) #> #> #> row [1346] - suspicious column: [bio5] - suspicious value: [32.96] #> distribution: 95.714% >= 36.01 - [mean: 37.68] - [sd: 0.66] - [norm. obs: 67] #> given: #> [bio1] > [27.31] (value: 27.41) #> [bio15] <= [102.79] (value: 102.34) #> [bio12] <= [993.00] (value: 855.00) #> #> #> row [1728] - suspicious column: [bio5] - suspicious value: [33.42] #> distribution: 95.714% >= 36.01 - [mean: 37.68] - [sd: 0.66] - [norm. obs: 67] #> given: #> [bio1] > [27.31] (value: 27.44) #> [bio15] <= [102.79] (value: 66.08) #> [bio12] <= [993.00] (value: 958.00) #> #> #> row [821] - suspicious column: [bio5] - suspicious value: [31.90] #> distribution: 98.333% >= 34.51 - [mean: 36.25] - [sd: 0.84] - [norm. obs: 59] #> given: #> [bio1] between (24.12, 25.70] (value: 24.70) #> [bio15] > [113.08] (value: 128.18) #> [bio12] <= [996.00] (value: 658.00) # Check result # You could also plot samples overlap with a raster # plot(occ_outliers, # overlay_raster = variables %>% slice('band', 6)) plot(occ_outliers) ``` plot of chunk remove_outliers ```r # Remove outliers if necessary occ_outliers <- suspicious_env_outliers( po_df, variables = variables, rm_outliers = T, z_outlier = 5, outliers_print = 0L, visualize = FALSE) po_sf <- occ_outliers$pts_occ # Make occurrences set.seed(11) occ_sf <- po_sf %>% sample_frac(0.7) occ_test_sf <- po_sf %>% filter(! id %in% occ_sf$id) occ_sf <- occ_sf %>% select(-id) %>% mutate(observation = 1) occ_test_sf <- occ_test_sf %>% select(-id) %>% mutate(observation = 1) # Have a look at the samples if you like # ggplot() + # geom_raster(data = as.data.frame(my.species$suitab.raster, xy = T), # aes(x, y, fill = layer)) + # scale_fill_viridis_c('Suitability', na.value = 'transparent') + # geom_sf(data = occ_sf, aes(color = 'Train'), size = 0.8) + # geom_sf(data = occ_test_sf, aes(color = 'Test'), size = 0.8) + # scale_color_manual('', values = c('Train' = 'red', 'Test' = 'blue')) + # theme_classic() # Recheck the variable correlation dim_reduce(variables, threshold = 1.0, samples = occ_sf) #> Dimension reduction #> Correlation threshold: 1 #> Original variables: bio1, bio5, bio12, bio15 #> Variables after dimension reduction: bio1, bio5, bio12, bio15 #> ================================================================================ #> Reduced correlations: #> bio1 bio5 bio12 bio15 #> bio1 1.00 0.69 0.19 -0.22 #> bio5 0.69 1.00 -0.03 0.20 #> bio12 0.19 -0.03 1.00 -0.37 #> bio15 -0.22 0.20 -0.37 1.00 ``` Unfortunately, bio1 and bio5 have strong correlation with each other. This might affect the model explanation later. ## Build a simple `isolation_forest` species distribution model Here we build a SDM using extended isolation forest (with `ndim = 2`) and a sample rate of 0.8. ```r # Do modeling it_sdm <- isotree_po(obs = occ_sf, obs_ind_eval = occ_test_sf, variables = variables, sample_size = 0.8, ndim = 2) ``` Let's compare the predicted suitability with real suitability. plot of chunk prediction plot of chunk raw_suit Let's do model evaluation using multiple presence-only metrics. In this package, we implement both presence-only and presence-background evaluation metrics. The model calculated evaluation on both training and test datasets. Here we just display evaluation on test dataset. You could check `it_sdm$eval_train` the same way as `it_sdm$eval_test`. ```r # Metrics based on test dataset it_sdm$eval_test #> =================================== #> Presence-only evaluation: #> CVI with 0.25 threshold: 0.640 #> CVI with 0.5 threshold: 0.809 #> CVI with 0.75 threshold: 0.704 #> CBI: 0.986 #> AUC (ratio) 0.942 #> =================================== #> Presence-background evaluation: #> Sensitivity: 0.972 #> Specificity: 0.856 #> TSS: 0.828 #> AUC: 0.946 #> Similarity indices: #> Jaccard's similarity index: 0.849 #> Sørensen's similarity index: 0.919 #> Overprediction rate: 0.129 #> Underprediction rate: 0.028 plot(it_sdm$eval_test) ``` plot of chunk evaluation The result of `isotree_po` has options to generate response curves and variable analysis together. The response curves include marginal response curves, independent response curves, and Shapley value-based dependence. The variable analysis consists of the Jackknife of Pearson correlation with the result of the full model with all variables and AUC_ratio and variable dependence with SHAP test. ```r # Plot response curves ## Marginal response curves of bio5 and bio6 plot(it_sdm$marginal_responses, target_var = c('bio1', 'bio5')) ``` plot of chunk marginal_responses ```r ## Independent response curves of variable bio1 and bio12. plot(it_sdm$independent_responses, target_var = c('bio1', 'bio12')) ``` plot of chunk independent_responses ```r ## Variable dependence scatter points with fitted curves made by SHAP test plot(it_sdm$shap_dependence, smooth_line = FALSE) ``` plot of chunk variable_dependence ```r # Printing variable analysis could give you enough info of variable importance it_sdm$variable_analysis #> Relative variable importance #> =================================== #> Methods: Jackknife test and SHAP #> Numer of variables: 4 #> =================================== #> Jackknife test #> Based on Pearson correlation (Max value is 1) #> [Training dataset]: #> bio12 With only: //////////////////////////////////////// 0.885 #> Without : ////////////////////////////////////////// 0.937 #> bio15 With only: //////////////////////////////// 0.71 #> Without : //////////////////////////////////////////// 0.974 #> bio5 With only: /////////////////////////////// 0.692 #> Without : //////////////////////////////////////////// 0.983 #> bio1 With only: //////////////////////// 0.543 #> Without : //////////////////////////////////////////// 0.983 #> [Test dataset]: #> bio12 With only: /////////////////////////////////////// 0.878 #> Without : ////////////////////////////////////////// 0.934 #> bio5 With only: //////////////////////////////// 0.705 #> Without : //////////////////////////////////////////// 0.983 #> bio15 With only: //////////////////////////////// 0.703 #> Without : //////////////////////////////////////////// 0.976 #> bio1 With only: //////////////////////// 0.536 #> Without : //////////////////////////////////////////// 0.983 #> ====================================================================== #> Jackknife test #> Based on AUC ratio (Max value of traing and test are 0.946 and 0.942) #> [Training dataset]: #> bio12 With only: //////////////////////////////////////// 0.898 #> Without : ///////////////////////////////////////// 0.921 #> bio5 With only: ///////////////////////////////////// 0.82 #> Without : ////////////////////////////////////////// 0.941 #> bio15 With only: //////////////////////////////////// 0.801 #> Without : ////////////////////////////////////////// 0.94 #> bio1 With only: ////////////////////////////////// 0.761 #> Without : ////////////////////////////////////////// 0.943 #> [Test dataset]: #> bio12 With only: //////////////////////////////////////// 0.878 #> Without : ///////////////////////////////////////// 0.919 #> bio5 With only: //////////////////////////////////// 0.791 #> Without : ////////////////////////////////////////// 0.936 #> bio15 With only: /////////////////////////////////// 0.773 #> Without : ////////////////////////////////////////// 0.936 #> bio1 With only: ///////////////////////////////// 0.735 #> Without : ////////////////////////////////////////// 0.938 #> ====================================================================== #> SHAP (mean(|Shapley value|)) #> [Training dataset]: #> bio12 : ############################################ 0.054 #> bio15 : ######################### 0.031 #> bio5 : ######################### 0.03 #> bio1 : ##################### 0.026 #> [Test dataset]: #> bio12 : ############################################# 0.055 #> bio5 : ########################## 0.032 #> bio15 : ######################### 0.031 #> bio1 : ##################### 0.026 # We also could plot variable importance out plot(it_sdm$variable_analysis) ``` plot of chunk variable_analysis According to the analysis, all explanatory variables contribute significantly to the model. This is predictable because the virtual species is made by these four variables. bio12 is the most important variable. Besides the regular response curves, `itsdm` also makes spatially partial dependence maps. By default in `isotree_po`, Shapley value-based spatial dependence maps are not generated because of the computational efficiency. The user could generate these maps by calling function `spatial_response` later after getting the model done. Note that a very large raster stack of environmental variables might cause memory failure or super slow computation when calculating Shapely value-based spatially dependence maps. So use it based on your own knowledge of your data. Shapley value-based dependence map will give you a bit more information of the value pushing the prediction higher or lower than average. ```r # Generate spatially partial dependence maps including Shapley value-based one ## Larger shap_nsim value could make smoother map but takes longer time as a ## trade-off spatial_responses_all <- spatial_response( model = it_sdm$model, var_occ = it_sdm$vars_train, variables = it_sdm$variables, shap_nsim = 20) # Plot spatial response maps plot(spatial_responses_all, target_var = c('bio1', 'bio12')) ``` plot of chunk spatial_response Marginal and independent effects only indicate the difference comparing the variable itself. And Shapley value based effect additionally show the relative contribution of one variable comparing to to other variables. For example, SHAP-based effect of bio1 shows that bio1 does not contribute much to the model over some areas even though it is an decisive variable. The direct result of function `isotree_po` is environmental suitability. We could use function `convert_to_pa` to convert suitability to presence-absence based on different methods: threshold, logistic, and linear conversion, and/or a desirable species prevalence. ```r # An example of converting to presence-absence map ## Use logistic conversion with alpha = -0.05, beta = 0.5 ## and not set species prevalence pa_map <- convert_to_pa(it_sdm$prediction, method = "logistic", beta = 0.7, # the same with virtual species alpha = -.05, visualize = FALSE) pa_map; plot(pa_map) #> Logistic conversion #> beta = 0.7 #> alpha = -0.05 #> species prevalence = 0.105503625307627 ``` plot of chunk pa ## Analyze variable dependence It is always helpful to understand the dependence among variables. The result of function `shap_dependence` or `it_sdm$shap_dependence` can be used to analyze variable dependence with each other. ```r var_dependence <- shap_dependence( it_sdm$model, it_sdm$vars_train, variables = it_sdm$variables) # Multiple ways to plot variable VariableDependence object ## Plot without smooth fit curve plot(var_dependence, target_var = c('bio1', 'bio12'), related_var = 'bio5', smooth_line = TRUE) ``` plot of chunk var_inter_dependence Above figure shows bio1 and bio5 have strong correlations. ## Analyze variable contribution Sometimes, we are interested in some observations, for instance, the outliers. `variable_contrib` is such function that allows you to analyze the contribution of each variable. It relies on Shapley values. ```r ## Analyze variable contribution for interested observations. ## For example, outliers. var_contrib <- variable_contrib( it_sdm$model, it_sdm$vars_train, it_sdm$vars_test %>% slice(1:6)) # Plot contribution separately for each observation ## By default, it only plot the most 5 important variables for each observation ## You could change `num_features` to show more variables plot(var_contrib, plot_each_obs = T, num_features = 4) ``` plot of chunk var_contrib For example, No.2 observation is decided largely by bio15 and bio5 negatively. Let's check it with spatial response map together. ```r ggplot() + geom_stars(data = spatial_responses_all$spatial_shap_dependence$bio15) + scale_fill_distiller('SHAP-based effect', palette = "RdYlBu", na.value = "transparent") + geom_sf(data = occ_test_sf %>% slice(2), color = 'blue', pch = 1) + theme_linedraw() ``` plot of chunk var_contrib_plot